不同地点还有所不同

2019-04-08 06:56:00
hjcadmin
原创
281
我相信你们都熟悉这样的海洋, 但事实是, 海洋的大部分地方 并不是这样的景象。 在水面下阳光照射不到的地方, 则是另一个非凡的世界, 即所谓的过渡带。 在水面下200米到1000米的深处, 阳光几乎无法到达。 微小的颗粒在黑暗中旋转, 而生物体发出的微光 告诉我们这里充满着生命: 微生物,浮游生物,鱼类。 所有生活在这里的生命体 都对这极端环境下的 挑战有着惊人的适应力。 这些生物支撑了食物链顶端的 猎食者,譬如鲸鱼,金枪鱼, 旗鱼以及鲨鱼的生存。 这里的鱼类生物质含量是 之前推算的十倍。 事实上,可能比海洋 其他部分的总和还要多。 在深海,有无数尚未被发现的物种, 而过渡带中的生命 与地球气候息息相关。  我们对过渡带知道的太少了, 因为它很难研究。 它实在太大了, 从北极到南大洋, 覆盖全球。 不同地点还有所不同。 随着水流和动物的运动, 它也快速变化着。 它是那么的深邃,黑暗, 寒冷,那里的压力也很大。  更有趣的是, 因为小的体型并没有阻止 它们通过数量变得强大。 水下的穿透声呐向我们展示, 这些动物组成了厚厚的一层。 你可以从这组数据中 大约四百米处的红色和 得到一个直观的概念。 大部分声波从这层反弹, 它曾被误认为是海洋底部。 但是如果我们仔细观察,这不可能, 因为这层物质在白天位于深处, 而在夜晚它上升了, 而且这个模式每天都在重复。 这事实上是地球上最大的动物迁徙。 每天它都在全球范围内发生着, 以巨大的生物波浪 席卷全球的海洋。 那时,过渡带中的生物会在夜晚 迁移数百米到水面觅食, 然后在白天回到更深、更暗, 相对安全的水体中。  我是一名研究 海洋生物的科学家。 对我而言,对这些生物的 好奇心是很强的驱动力, 但动机却远不止如此。 我们需要回答这些问题, 并要尽快回答, 因为过渡带面临着威胁。 公海中的捕鱼船 正在灭绝性地捕捉着 成百上千吨叫做 磷虾的小型虾类生物。 这些磷虾被碾碎制成鱼食, 以支撑水产业,以及对 譬如虾油的保健品 不断增长的需求。 捕鱼业就要触及到更深的海域, 进入中层水体, 这可能会开启一场 在国家渔业管理范围之外的 过渡带的“淘金潮”。 这可能会对全球范围的 海洋生物和食物网 造成不可逆的影响。 我们需要领先捕鱼的影响一步, 努力理解海洋中 这一重要组成部分。  我认为我们可以改变这一现状。 这类的挑战让我 对海洋学产生了兴趣。 对我来说,这代表了科学, 技术以及未知的完美交融, 这导致了许多有关 地球生物的突破性发现。  我们会在过渡带这一海面下数百米、广阔神秘却又未曾被探索的水体中发现什么呢?在这场精彩的演讲中,她分享了利用潜水技术探索蕴含着百万种新生 物,以及世界上90%的鱼类生物的未知水域的计划。Heidi说道,探索发现不仅会令我们感到吃惊,还会帮助我们更好的管理海洋。  但我们仍有许多问题。 我们不知道何种生物在迁移, 它们吃些什么, 又被谁吃掉, 或是它们可以转移多少的碳。  我们已经知道的就很不可思议了。 你可能想象着, 巨型怪物潜伏在深海, 但那里的大部分动物都很小, 就像这灯笼鱼一样。 这种面目狰狞的鱼叫做圆罩鱼。 信不信由你,这是 地球上最多的脊椎生物, 它们大都很小, 这一管可以装下许多条。  过渡带确实是一种全球公共资源。 我们首先需要知道并了解它, 然后我们才能负责任的管理,并进行可持续性的开采捕捞。 这不是一场事关科学家的旅程, 这与我们所有人息息相关, 因为我们在接下来十年 共同做出的决定, 会影响数世纪之内, 海洋的形态。  在伍兹霍尔海洋研究所, 我十分有幸加入有着 同样热情的同行队伍中。 我们已经一起为 大规模的过渡带探索 做好准备。 我们计划从北大西洋的 科考开始, 在那里我们会着手解决 过渡带的复杂多样性 为观测和研究带来的巨大挑战。 这一多规格,多层次的考察 意味着我们需要引入新的技术。  让我说一个最近的例子, 这改变了我们的思考。 在譬如鲨鱼等动物 身上的卫星 告诉我们,许多顶层捕食者 会经常潜入深海觅食。 当我们绘制它们的游动路径, 并将其与卫星数据比较时, 我们发现它们经常觅食的地点, 与洋流和其他特质有着联系。 我们曾经认为这些动物 在水体表层就能获得所有的食物。 现在我们相信它们依赖着过渡带。 但是我们仍需要搞清楚, 它们是如何找到最佳地点觅食的, 它们在那里吃些什么, 以及它们的饮食中有多少 是依赖过渡带生存的物种。  我们也需要新的技术 来探索(它们)与气候之间的联系。 还记得这些微粒吗? 它们中的有些是由一种 叫做樽海鞘的胶装动物产生的。 樽海鞘就像强力吸尘器一样, 吸食着浮游生物,并产生着 会快速下沉的排泄物颗粒—— 想象把我的语速加快十倍—— 携带着碳的排泄物,沉入深海。有时,我们发现樽海鞘成群出现。 我们需要了解哪里, 何时,为何,以及是否 这种“碳缸”会对地球气候 产生巨大的影响。  这些动物以及它们的运动 以重要的方式 连接着表层海面和深层海体。 它们在海面觅食, 将它们食物中的碳带到深海, 有些碳可以留在那儿, 和大气圈隔绝几百,甚至几千年。 这么一来,迁移可以帮助吸收 大气圈中的二氧化碳, 限制全球变暖对气候的影响。  我们全队的科学家,工程师和通讯员 都对这一发现兴奋至极。 大家也都有了一种深深的急迫感。 我们不可能将时光 倒转到过渡捕鱼之前, 那时,捕鱼在曾经 看上去永不枯竭的 无数海域进行着。 如果这次我们换条航线, 该有多好呀?  当我还在读大学时, 我和一群科学家 在大西洋上进行远洋考察, 利用高强度激光 测量微型藻类。 那次航行中有一个意外收获, 我们发现了之前被所有人 忽略了的东西: 光合细胞比任何人想象的都要小。 现在我们知道这些 微小的细胞,是地球上 最丰富的光合生物体。 正因为我们采用了新的技术, 用新的方式来观察海洋中的生命, 我们才得以有这一惊人的发现。 我深信,在那片过渡带中 等待我们发现的未知事物, 会同样令人激动。  为了面对这些挑战, 我们需要推进技术的极限。 我们会使用智能机器人身上的 摄像头和样本采集器 在深处考察,帮助我们追踪 像樽海鞘这样生物的隐秘生活。 我们会使用先进的声呐, 来搞清那里生活着 多少鱼类和其他动物。 我们会用类似法医分析的方法, 对环境中的DNA进行测序, 来搞清哪些生物生活在哪里, 以及它们吃些什么。 过渡带中充满着未知, 也就意味着那里蕴藏着 新发现的无限可能。 看看这些美丽的, 令人着迷的生物吧。 我们对它们几乎一无所知。 想象一下,在深海中 有多少东西正等待着我们 用新的技术去发现。
文章分类
联系我们
联系人: ALLBET
Email: 1586171493@qq.com
QQ: 1586171493